Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36079950

RESUMO

In recent years, two-dimensional molybdenum disulfide (MoS2) has attracted extensive attention in the application field of next-generation electronics. Compared with single-layer MoS2, bilayer MoS2 has higher carrier mobility and has more promising applications for future novel electronic devices. Nevertheless, the large-scale low-cost synthesis of high-quality bilayer MoS2 still has much room for exploration, requiring further research. In this study, bilayer MoS2 crystals grown on soda-lime glass substrate by sodium chloride (NaCl)-assisted chemical vapor deposition (CVD) were reported, the growth mechanism of NaCl in CVD of bilayer MoS2 was analyzed, and the effects of molybdenum trioxide (Mo) mass and growth pressure on the growth of bilayer MoS2 under the assistance of NaCl were further explored. Through characterization with an optical microscope, atomic force microscopy and Raman analyzer, the domain size of bilayer MoS2 prepared by NaCl-assisted CVD was shown to reach 214 µm, which is a 4.2X improvement of the domain size of bilayer MoS2 prepared without NaCl-assisted CVD. Moreover, the bilayer structure accounted for about 85%, which is a 2.1X improvement of bilayer MoS2 prepared without NaCl-assisted CVD. This study provides a meaningful method for the growth of high-quality bilayer MoS2, and promotes the large-scale and low-cost applications of CVD MoS2.

2.
Nanomaterials (Basel) ; 12(15)2022 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-35957148

RESUMO

Two-dimensional molybdenum disulfide (MoS2) has attracted significant attention for next-generation electronics, flexible devices, and optical applications. Chemical vapor deposition is the most promising route for the production of large-scale, high-quality MoS2 films. Recently, the chemical vapor deposition of MoS2 films on soda-lime glass has attracted great attention due to its low cost, fast growth, and large domain size. Typically, a piece of Mo foil or graphite needs to be used as a buffer layer between the glass substrates and the CVD system to prevent the glass substrates from being fragmented. In this study, a novel method was developed for synthesizing MoS2 on glass substrates. Inert Al2O3 was used as the buffer layer and high-quality, uniform, triangular monolayer MoS2 crystals with domain sizes larger than 400 µm were obtained. To demonstrate the advantages of glass/Al2O3 substrates, a direct comparison of CVD MoS2 on glass/Mo and glass/Al2O3 substrates was performed. When Mo foil was used as the buffer layer, serried small bilayer islands and bright core centers could be observed on the MoS2 domains at the center and edges of glass substrates. As a control, uniform MoS2 crystals were obtained when Al2O3 was used as the buffer layer, both at the center and the edge of glass substrates. Raman and PL spectra were further characterized to show the merit of glass/Al2O3 substrates. In addition, the thickness of MoS2 domains was confirmed by an atomic force microscope and the uniformity of MoS2 domains was verified by Raman mapping. This work provides a novel method for CVD MoS2 growth on soda-lime glass and is helpful in realizing commercial applications of MoS2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...